Displaying 81 – 100 of 1505

Showing per page

A new Kantorovich-type theorem for Newton's method

Ioannis Argyros (1999)

Applicationes Mathematicae

A new Kantorovich-type convergence theorem for Newton's method is established for approximating a locally unique solution of an equation F(x)=0 defined on a Banach space. It is assumed that the operator F is twice Fréchet differentiable, and that F', F'' satisfy Lipschitz conditions. Our convergence condition differs from earlier ones and therefore it has theoretical and practical value.

A new numerical model for propagation of tsunami waves

Karel Švadlenka (2007)

Kybernetika

A new model for propagation of long waves including the coastal area is introduced. This model considers only the motion of the surface of the sea under the condition of preservation of mass and the sea floor is inserted into the model as an obstacle to the motion. Thus we obtain a constrained hyperbolic free-boundary problem which is then solved numerically by a minimizing method called the discrete Morse semi-flow. The results of the computation in 1D show the adequacy of the proposed model.

A new simultaneous subgradient projection algorithm for solving a multiple-sets split feasibility problem

Yazheng Dang, Yan Gao (2014)

Applications of Mathematics

In this paper, we present a simultaneous subgradient algorithm for solving the multiple-sets split feasibility problem. The algorithm employs two extrapolated factors in each iteration, which not only improves feasibility by eliminating the need to compute the Lipschitz constant, but also enhances flexibility due to applying variable step size. The convergence of the algorithm is proved under suitable conditions. Numerical results illustrate that the new algorithm has better convergence than the...

A note on asymptotic contractions.

Arav, Marina, Santos, Francisco Eduardo Castillo, Reich, Simeon, Zaslavski, Alexander J. (2007)

Fixed Point Theory and Applications [electronic only]

Currently displaying 81 – 100 of 1505