Displaying 1001 – 1020 of 1511

Showing per page

On the Stability of Jungck–Mann, Jungck–Krasnoselskij and Jungck Iteration Processes in Arbitrary Banach Spaces

Alfred Olufemi Bosede (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper, we establish some stability results for the Jungck–Mann, Jungck–Krasnoselskij and Jungck iteration processes in arbitrary Banach spaces. These results are proved for a pair of nonselfmappings using the Jungck–Mann, Jungck–Krasnoselskij and Jungck iterations. Our results are generalizations and extensions to a multitude of stability results in literature including those of Imoru and Olatinwo [8], Jungck [10], Berinde [1] and many others.

On the topological dimension of the solutions sets for some classes of operator and differential inclusions

Ralf Bader, Boris D. Gel'man, Mikhail Kamenskii, Valeri Obukhovskii (2002)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In the present paper, we give the lower estimation for the topological dimension of the fixed points set of a condensing continuous multimap in a Banach space. The abstract result is applied to the fixed point set of the multioperator of the form = S F where F is the superposition multioperator generated by the Carathéodory type multifunction F and S is the shift of a linear injective operator. We present sufficient conditions under which this set has the infinite topological dimension. In the last...

On the unique solvability of a nonlocal phase separation problem for multicomponent systems

Jens A. Griepentrog (2004)

Banach Center Publications

A nonlocal model of phase separation in multicomponent systems is presented. It is derived from conservation principles and minimization of free energy containing a nonlocal part due to particle interaction. In contrast to the classical Cahn-Hilliard theory with higher order terms this leads to an evolution system of second order parabolic equations for the particle densities, coupled by nonlinear and nonlocal drift terms, and state equations which involve both chemical and interaction potential...

On the worst scenario method: a modified convergence theorem and its application to an uncertain differential equation

Petr Harasim (2008)

Applications of Mathematics

We propose a theoretical framework for solving a class of worst scenario problems. The existence of the worst scenario is proved through the convergence of a sequence of approximate worst scenarios. The main convergence theorem modifies and corrects the relevant results already published in literature. The theoretical framework is applied to a particular problem with an uncertain boundary value problem for a nonlinear ordinary differential equation with an uncertain coefficient.

On the worst scenario method: Application to a quasilinear elliptic 2D-problem with uncertain coefficients

Petr Harasim (2011)

Applications of Mathematics

We apply a theoretical framework for solving a class of worst scenario problems to a problem with a nonlinear partial differential equation. In contrast to the one-dimensional problem investigated by P. Harasim in Appl. Math. 53 (2008), No. 6, 583–598, the two-dimensional problem requires stronger assumptions restricting the admissible set to ensure the monotonicity of the nonlinear operator in the examined state problem, and, as a result, to show the existence and uniqueness of the state solution....

On Threshold Eigenvalues and Resonances for the Linearized NLS Equation

V. Vougalter (2010)

Mathematical Modelling of Natural Phenomena

We prove the instability of threshold resonances and eigenvalues of the linearized NLS operator. We compute the asymptotic approximations of the eigenvalues appearing from the endpoint singularities in terms of the perturbations applied to the original NLS equation. Our method involves such techniques as the Birman-Schwinger principle and the Feshbach map.

On two problems studied by A. Ambrosetti

David Arcoya, José Carmona (2006)

Journal of the European Mathematical Society

We study the Ambrosetti–Prodi and Ambrosetti–Rabinowitz problems.We prove for the first one the existence of a continuum of solutions with shape of a reflected C ( -shape). Next, we show that there is a relationship between these two problems.

On variational impulsive boundary value problems

Marek Galewski (2012)

Open Mathematics

Using the variational approach, we investigate the existence of solutions and their dependence on functional parameters for classical solutions to the second order impulsive boundary value Dirichlet problems with L1 right hand side.

Currently displaying 1001 – 1020 of 1511