An iterative scheme with a countable family of nonexpansive mappings for variational inequality problems in Hilbert spaces.
MSC 2010: 34A37, 34B15, 26A33, 34C25, 34K37In this paper we prove the existence of solutions for fractional impulsive differential equations with antiperiodic boundary condition in Banach spaces. The results are obtained by using fractional calculus' techniques and the fixed point theorems.
We recall a recent extension of the classical Banach fixed point theorem to partially ordered sets and justify its applicability to the study of the existence and uniqueness of solution for fuzzy and fuzzy differential equations. To this purpose, we analyze the validity of some properties relative to sequences of fuzzy sets and fuzzy functions.
In this paper we give some new results concerning solvability of the 1-dimensional differential equation with initial conditions. We study the basic theorem due to Picard. First we prove that the existence and uniqueness result remains true if is a Lipschitz function with respect to the first argument. In the second part we give a contractive method for the proof of Picard theorem. These considerations allow us to develop two new methods for finding an approximation sequence for the solution....
In this paper we consider the first order difference equation in a Banach space . We show that this equation has a solution asymptotically equal to a. As an application of our result we study the difference equation and give conditions when this equation has solutions. In this note we extend the results from [8,9]. For example, in [9] the function f is a real Lipschitz function. We suppose that f has values in a Banach space and satisfies some conditions with respect to the measure of noncompactness...
We study the asymptotic behavior of the solutions of a differential equation with unbounded delay. The results presented are based on the first Lyapunov method, which is often used to construct solutions of ordinary differential equations in the form of power series. This technique cannot be applied to delayed equations and hence we express the solution as an asymptotic expansion. The existence of a solution is proved by the retract method.
We study the asymptotic behaviour of solutions of a transport equation. We give some sufficient conditions for the complete mixing property of the Markov semigroup generated by this equation.
We present a new necessary and sufficient condition for the asymptotic stability of Markov operators acting on the space of signed measures. The proof is based on some special properties of the total variation norm. Our method allows us to consider the Tjon-Wu equation in a linear form. More precisely a new proof of the asymptotic stability of a stationary solution of the Tjon-Wu equation is given.
Asymptotic study of canonical correlation analysis gives the opportunity to present the different steps of an asymptotic study and to show the interest of an operator and tensor approach of multidimensional asymptotic statistics rather than the classical, matrix and analytic approach. Using the last approach, Anderson (1999) assumes the random vectors to have a normal distribution and the non zero canonical correlation coefficients to be distinct. The new approach we use, Fine (2000), is coordinate-free,...