The 2D Schrödinger equation for a neutral pair in a constant magnetic field
This paper presents a survey on the recent contributions to linear time- invariant delay-differential systems in the behavioral approach. In this survey both systems with commensurate and with noncommensurate delays will be considered. The emphasis lies on the investigation of the relationship between various systems descriptions. While this can be understood in a completely algebraic setting for systems with commensurate delays, this is not the case for systems with noncommensurate delays. In the...
Let be a -contraction on a Banach space and let be an almost -contraction, i.e. sum of an -contraction with a continuous, bounded function which is less than in norm. According to the contraction principle, there is a unique element in for which If moreover there exists in with , then we will give estimates for Finally, we establish some inequalities related to the Cauchy problem.
The properties of solutions of the nonlinear differential equation in a Banach space and of the special case of the homogeneous linear differential equation are studied. Theorems and conditions guaranteeing boundedness of the solution of the nonlinear equation are given on the assumption that the solutions of the linear homogeneous equation have certain properties.
The existence of the Hopf bifurcation for parabolic functional equations with delay of maximum order in spatial derivatives is proved. An application to an integrodifferential equation with a singular kernel is given.
Sufficient conditions on the existence of periodic solutions for semilinear differential inclusions are given in general Banach space. In our approach we apply the technique of the translation operator along trajectories. Due to recent results it is possible to show that this operator is a so-called decomposable map and thus admissible for certain fixed point index theories for set-valued maps. Compactness conditions are formulated in terms of the Hausdorff measure of noncompactness.