On a class of functional differential equations having slowly varying solutions.
We consider a boundary value problem for first order nonconvex differential inclusion and we obtain some existence results by using the set-valued contraction principle.
This paper investigates a class of fractional functional integrodifferential inclusions with nonlocal conditions in Banach spaces. The existence of mild solutions of these inclusions is determined under mixed continuity and Carathéodory conditions by using strongly continuous operator semigroups and Bohnenblust-Karlin's fixed point theorem.
2000 Mathematics Subject Classification: Primary 26A33; Secondary 47G20, 31B05We study a singular value problem and the boundary Harnack principle for the fractional Laplacian on the exterior of the unit ball.
On an infinite-dimensional Hilbert space, we establish the existence of solutions for some evolution problems associated with time-dependent subdifferential operators whose perturbations are Carathéodory single-valued maps.
One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.
In this paper we discuss the exact null controllability of linear as well as nonlinear Black–Scholes equation when both the stock volatility and risk-free interest rate influence the stock price but they are not known with certainty while the control is distributed over a subdomain. The proof of the linear problem relies on a Carleman estimate and observability inequality for its own dual problem and that of the nonlinear one relies on the infinite dimensional Kakutani fixed point theorem with ...
The present paper is devoted to sufficient conditions for existence of equilibria of Lipschitz multivalued maps in prescribed subsets of finite-dimensional spaces. The main improvement of the present study lies in the fact that we do not suppose any regular assumptions on the boundary of the subset. Our approach is based on behaviour of trajectories to the corresponding differential inclusion.
The existence of positive periodic solutions for a kind of Rayleigh equation with a deviating argument is studied. Using the coincidence degree theory, some sufficient conditions on the existence of positive periodic solutions are obtained.