Displaying 101 – 120 of 137

Showing per page

Existence of solutions of the dynamic Cauchy problem on infinite time scale intervals

Ireneusz Kubiaczyk, Aneta Sikorska-Nowak (2009)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In the paper, we prove the existence of solutions and Carathéodory’s type solutions of the dynamic Cauchy problem x Δ ( t ) = f ( t , x ( t ) ) , t ∈ T, x(0) = x₀, where T denotes an unbounded time scale (a nonempty closed subset of R and such that there exists a sequence (xₙ) in T and xₙ → ∞) and f is continuous or satisfies Carathéodory’s conditions and some conditions expressed in terms of measures of noncompactness. The Sadovskii fixed point theorem and Ambrosetti’s lemma are used to prove the main result. The results presented...

Existence Principles for Singular Vector Nonlocal Boundary Value Problems with φ -Laplacian and their Applications

Staněk, Svatoslav (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Existence principles for solutions of singular differential systems ( φ ( u ' ) ) ' = f ( t , u , u ' ) satisfying nonlocal boundary conditions are stated. Here φ is a homeomorphism N onto N and the Carathéodory function f may have singularities in its space variables. Applications of the existence principles are given.

Currently displaying 101 – 120 of 137