Pareto optimality for nonlinear infinite dimensional control systems.
We describe an approach to variational problems, where the solutions appear as pointwise (finite-dimensional) minima for fixed t of the supplemented Lagrangian. The minimization is performed simultaneously with respect to the state variable x and ẋ, as opposed to Pontryagin's maximum principle, where optimization is done only with respect to the ẋ-variable. We use the idea of the equivalent problems of Carathéodory employing suitable (and simple) supplements to the original minimization problem....
Fix two points and two directions (without orientation) of the velocities in these points. In this paper we are interested to the problem of minimizing the cost along all smooth curves starting from x with direction η and ending in with direction . Here g is the standard Riemannian metric on S2 and is the corresponding geodesic curvature. The interest of this problem comes from mechanics and geometry of vision. It can be formulated as a sub-Riemannian problem on the lens space L(4,1). We...
Proper orthogonal decomposition (POD) is a powerful technique for model reduction of non-linear systems. It is based on a Galerkin type discretization with basis elements created from the dynamical system itself. In the context of optimal control this approach may suffer from the fact that the basis elements are computed from a reference trajectory containing features which are quite different from those of the optimally controlled trajectory. A method is proposed which avoids this problem of unmodelled...