Another approach to the classical calculus of variations. I
The main goal of this paper is to show some applications of the optimal control theory to the wastewater elimination problem. Firstly, we deal with the numerical simulation of a given situation. We present a suitable mathematical model, propose a method to solve it and show the numerical results for a realistic situation in the ría of Arousa (Spain). Secondly, in the same framework of wastewater elimination problem, we pose two economic-environmental problems which can be formulated as constrained...
We study some problems of optimal distribution of masses, and we show that they can be characterized by a suitable Monge-Kantorovich equation. In the case of scalar state functions, we show the equivalence with a mass transport problem, emphasizing its geometrical approach through geodesics. The case of elasticity, where the state function is vector valued, is also considered. In both cases some examples are presented.
We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement...
We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement constraint...
We consider models based on conservation laws. For the optimization of such systems, a sensitivity analysis is essential to determine how changes in the decision variables influence the objective function. Here we study the sensitivity with respect to the initial data of objective functions that depend upon the solution of Riemann problems with piecewise linear flux functions. We present representations for the one–sided directional derivatives of the objective functions. The results can be used...
We consider models based on conservation laws. For the optimization of such systems, a sensitivity analysis is essential to determine how changes in the decision variables influence the objective function. Here we study the sensitivity with respect to the initial data of objective functions that depend upon the solution of Riemann problems with piecewise linear flux functions. We present representations for the one–sided directional derivatives of the objective functions. The results can be used...