Measurable multifunctions and their applications to convex integral functionals.
For a class of 2-D elastic energies we show that a radial equilibrium solution is the unique global minimizer in a subclass of all admissible maps. The boundary constraint is a double cover of ; the minimizer is and is such that vanishes at one point.
For a class of 2-D elastic energies we show that a radial equilibrium solution is the unique global minimizer in a subclass of all admissible maps. The boundary constraint is a double cover of S1; the minimizer u is C1 and is such that vanishes at one point.
We apply four different methods to study an intrinsically bang-bang optimal control problem. We study first a relaxed problem that we solve with a naive nonlinear programming approach. Since these preliminary results reveal singular arcs, we then use Pontryagin’s Minimum Principle and apply multiple indirect shooting methods combined with homotopy approach to obtain an accurate solution of the relaxed problem. Finally, in order to recover a purely bang-bang solution for the original problem, we...