On a minimax problem of Ricceri.
In this paper, we derive a general theorem concerning the quasi-variational inequality problem: find x̅ ∈ C and y̅ ∈ T(x̅) such that x̅ ∈ S(x̅) and ⟨y̅,z-x̅⟩ ≥ 0, ∀ z ∈ S(x̅), where C,D are two closed convex subsets of a normed linear space X with dual X*, and and are multifunctions. In fact, we extend the above to an existence result proposed by Ricceri [12] for the case where the multifunction T is required only to satisfy some general assumption without any continuity. Under a kind of Karmardian’s...
This paper deals with a multiobjective control problem for nonlinear discrete time systems. The problem consists of finding a control strategy which minimizes a number of performance indexes subject to state and control constraints. A solution to this problem through the Receding Horizon approach is proposed. Under standard assumptions, it is shown that the resulting control law guarantees closed-loop stability. The proposed method is also used to provide a robustly stabilizing solution to the problem...
In this paper, first we consider parametric control systems driven by nonlinear evolution equations defined on an evolution triple of spaces. The parametres are time-varying probability measures (Young measures) defined on a compact metric space. The appropriate optimization problem is a minimax control problem, in which the system analyst minimizes the maximum cost (risk). Under general hypotheses on the data we establish the existence of optimal controls. Then we pass to nonparametric...