On a certain type of discrete two-point boundary problem arising in discrete optimal control
Consideramos una clase de problemas de optimización que surgen en estimaciones de la densidad de datos en dimensión elevada a partir de proyecciones en subespacios de dimensión más baja. Los criterios que se usan para la selección óptima del modelo son máxima entropía y máxima verosimilitud. En cada caso nuestro planteamiento requiere estimadores de la densidad univariados y a este respecto exploramos el uso de modelos mezcla de densidades gaussianas y de estimadores de Parzen para los datos proyectados....
In the paper necessary optimality conditions are derived for the minimization of a locally Lipschitz objective with respect to the consttraints , where is a closed set and is a set-valued map. No convexity requirements are imposed on . The conditions are applied to a generalized mathematical programming problem and to an abstract finite-dimensional optimal control problem.
The motivation for this work is the real-time solution of a standard optimal control problem arising in robotics and aerospace applications. For example, the trajectory planning problem for air vehicles is naturally cast as an optimal control problem on the tangent bundle of the Lie Group which is also a parallelizable riemannian manifold. For an optimal control problem on the tangent bundle of such a manifold, we use frame co-ordinates and obtain first-order necessary conditions employing calculus...
The motivation for this work is the real-time solution of a standard optimal control problem arising in robotics and aerospace applications. For example, the trajectory planning problem for air vehicles is naturally cast as an optimal control problem on the tangent bundle of the Lie Group SE(3), which is also a parallelizable Riemannian manifold. For an optimal control problem on the tangent bundle of such a manifold, we use frame co-ordinates and obtain first-order necessary conditions...