Beiträge zur Theorie und Anwendung der Variationsrechnung. (Erster, Aufsatz) .
For a shape optimization problem second derivatives are investigated, obtained by a special approach for the description of the boundary variation and the use of a potential ansatz for the state. The natural embedding of the problem in a Banach space allows the application of a standard differential calculus in order to get second derivatives by a straight forward "repetition of differentiation". Moreover, by using boundary value characerizations for more regular data, a complete boundary integral...
MSC 2010: 49K05, 26A33We give a proper fractional extension of the classical calculus of variations. Necessary optimality conditions of Euler-Lagrange type for variational problems containing both classical and fractional derivatives are proved. The fundamental problem of the calculus of variations with mixed integer and fractional order derivatives as well as isoperimetric problems are considered.
We study some problems of optimal distribution of masses, and we show that they can be characterized by a suitable Monge-Kantorovich equation. In the case of scalar state functions, we show the equivalence with a mass transport problem, emphasizing its geometrical approach through geodesics. The case of elasticity, where the state function is vector valued, is also considered. In both cases some examples are presented.