Page 1

Displaying 1 – 5 of 5

Showing per page

Chance constrained optimal beam design: Convex reformulation and probabilistic robust design

Jakub Kůdela, Pavel Popela (2018)

Kybernetika

In this paper, we are concerned with a civil engineering application of optimization, namely the optimal design of a loaded beam. The developed optimization model includes ODE-type constraints and chance constraints. We use the finite element method (FEM) for the approximation of the ODE constraints. We derive a convex reformulation that transforms the problem into a linear one and find its analytic solution. Afterwards, we impose chance constraints on the stress and the deflection of the beam....

Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

Anton Evgrafov, Misha Marie Gregersen, Mads Peter Sørensen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal design, in particular shape and topology optimization, and are most often solved numerically utilizing a finite element approach. Within the FV framework for control in the coefficients problems ...

Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

Anton Evgrafov, Misha Marie Gregersen, Mads Peter Sørensen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal design, in particular shape and topology optimization, and are most often solved numerically utilizing a finite element approach. Within the FV framework for control in the coefficients problems ...

Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's

Konstantinos Chrysafinos (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A discontinuous Galerkin finite element method for an optimal control problem related to semilinear parabolic PDE's is examined. The schemes under consideration are discontinuous in time but conforming in space. Convergence of discrete schemes of arbitrary order is proven. In addition, the convergence of discontinuous Galerkin approximations of the associated optimality system to the solutions of the continuous optimality system is shown. The proof is based on stability estimates at arbitrary time...

Convergence of the time-discretized monotonic schemes

Julien Salomon (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Many numerical simulations in (bilinear) quantum control use the monotonically convergent Krotov algorithms (introduced by Tannor et al. [Time Dependent Quantum Molecular Dynamics (1992) 347–360]), Zhu and Rabitz [J. Chem. Phys. (1998) 385–391] or their unified form described in Maday and Turinici [J. Chem. Phys. (2003) 8191–8196]. In Maday et al. [Num. Math. (2006) 323–338], a time discretization which preserves the property of monotonicity has been presented. This paper introduces a proof of...

Currently displaying 1 – 5 of 5

Page 1