Page 1

Displaying 1 – 5 of 5

Showing per page

Receding horizon optimal control for infinite dimensional systems

Kazufumi Ito, Karl Kunisch (2002)

ESAIM: Control, Optimisation and Calculus of Variations

The receding horizon control strategy for dynamical systems posed in infinite dimensional spaces is analysed. Its stabilising property is verified provided control Lyapunov functionals are used as terminal penalty functions. For closed loop dissipative systems the terminal penalty can be chosen as quadratic functional. Applications to the Navier–Stokes equations, semilinear wave equations and reaction diffusion systems are given.

Receding horizon optimal control for infinite dimensional systems

Kazufumi Ito, Karl Kunisch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The receding horizon control strategy for dynamical systems posed in infinite dimensional spaces is analysed. Its stabilising property is verified provided control Lyapunov functionals are used as terminal penalty functions. For closed loop dissipative systems the terminal penalty can be chosen as quadratic functional. Applications to the Navier–Stokes equations, semilinear wave equations and reaction diffusion systems are given.

Regular syntheses and solutions to discontinuous ODEs

Alessia Marigo, Benedetto Piccoli (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we analyze several concepts of solution to discontinuous ODEs in relation to feedbacks generated by optimal syntheses. Optimal trajectories are called Stratified Solutions in case of regular synthesis in the sense of Boltyanskii–Brunovsky. We introduce a concept of solution called Krasowskii Cone Robust that characterizes optimal trajectories for minimum time on the plane and for general problems under suitable assumptions.

Regular syntheses and solutions to discontinuous ODEs

Alessia Marigo, Benedetto Piccoli (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we analyze several concepts of solution to discontinuous ODEs in relation to feedbacks generated by optimal syntheses. Optimal trajectories are called Stratified Solutions in case of regular synthesis in the sense of Boltyanskii-Brunovsky. We introduce a concept of solution called Krasowskii Cone Robust that characterizes optimal trajectories for minimum time on the plane and for general problems under suitable assumptions.

Currently displaying 1 – 5 of 5

Page 1