Displaying 301 – 320 of 423

Showing per page

The contributions of Hilbert and Dehn to non-archimedean geometries and their impact on the italian school

Cinzia Cerroni (2007)

Revue d'histoire des mathématiques

In this paper we investigate the contribution of Dehn to the development of non-Archimedean geometries. We will see that it is possible to construct some models of non-Archimedean geometries in order to prove the independence of the continuity axiom and we will study the interrelations between Archimedes’ axiom and Legendre’s theorems. Some of these interrelations were also studied by Bonola, who was one of the very few Italian scholars to appreciate Dehn’s work. We will see that, if Archimedes’...

The geometry of null systems, Jordan algebras and von Staudt's theorem

Wolfgang Bertram (2003)

Annales de l’institut Fourier

We characterize an important class of generalized projective geometries ( X , X ' ) by the following essentially equivalent properties: (1) ( X , X ' ) admits a central null-system; (2) ( X , X ' ) admits inner polarities: (3) ( X , X ' ) is associated to a unital Jordan algebra. These geometries, called of the first kind, play in the category of generalized projective geometries a rôle comparable to the one of the projective line in the category of ordinary projective geometries. In this general set-up, we prove an analogue of von Staudt’s...

Currently displaying 301 – 320 of 423