Ternärringe ohne Planaritätsbedingung
In this paper we investigate the contribution of Dehn to the development of non-Archimedean geometries. We will see that it is possible to construct some models of non-Archimedean geometries in order to prove the independence of the continuity axiom and we will study the interrelations between Archimedes’ axiom and Legendre’s theorems. Some of these interrelations were also studied by Bonola, who was one of the very few Italian scholars to appreciate Dehn’s work. We will see that, if Archimedes’...
A simple proof is presented of a famous, and difficult, theorem by Jakob Steiner. By means of a straightforward transformation of the triangle, the proof of the theorem is reduced to the case of the equilateral triangle. Several relations of the Steiner deltoid with the Feuerbach circle and the Morley triangle appear then as obvious.
We characterize an important class of generalized projective geometries by the following essentially equivalent properties: (1) admits a central null-system; (2) admits inner polarities: (3) is associated to a unital Jordan algebra. These geometries, called of the first kind, play in the category of generalized projective geometries a rôle comparable to the one of the projective line in the category of ordinary projective geometries. In this general set-up, we prove an analogue of von Staudt’s...