Flächengleichheit und Cavalierische Gleichheit von Dreiecken.
We investigate how to glue hyperconvex (or injective) metric spaces such that the resulting space remains hyperconvex. We give two new criteria, saying that on the one hand gluing along strongly convex subsets and on the other hand gluing along externally hyperconvex subsets leads to hyperconvex spaces. Furthermore, we show by an example that these two cases where gluing works are opposed and cannot be combined.
We describe the notion of a weakly Lipschitz mapping on a stratification. We also distinguish a class of regularity conditions that are in some sense invariant under definable, locally Lipschitz and weakly bi-Lipschitz homeomorphisms. This class includes the Whitney (B) condition and the Verdier condition.
Geometric properties of finite systems of homogeneous resistive wire segments in a Euclidean -space are studied in the case that the absorption of energy of such a system in an arbitrary linear electrical field is invariant under any orthogonal transformation of the system.