Radical relations in unitary, symplectic, and orthogonal groups.
This paper addresses two problems lying at the intersection of geometric analysis and theoretical computer science: The non-linear isomorphic Dvoretzky theorem and the design of good approximate distance oracles for large distortion.We introduce the notion of Ramsey partitions of a finite metric space, and show that the existence of good Ramsey partitions implies a solution to the metric Ramsey problem for large distortion (also known as the non-linear version of the isomorphic Dvoretzky theorem,...
In an absolute space with congruence there are line reflections and point reflections. With the help of point reflections one can define in a natural way an addition + of points which is only associative if the product of three point reflection is a point reflection again. In general, for example for the case that is a linear space with hyperbolic incidence structure, the addition is not associative. is a K-loop or a Bruck loop.
For each integer and each finite graph , we construct a Coxeter group and a non positively curved polygonal complex on which acts properly cocompactly, such that each polygon of has edges, and the link of each vertex of is isomorphic to . If is a “generalized -gon”, then is a Tits building modelled on a reflection group of the hyperbolic plane. We give a condition on for to be non enumerable (which is satisfied if is a thick classical generalized -gon). On the other hand,...