On a generalized Minkowski inequality and its relation to dominates for t-norms.
In this article we study the Ahlfors regular conformal gauge of a compact metric space , and its conformal dimension . Using a sequence of finite coverings of , we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute using the critical exponent associated to the combinatorial modulus.
In this note, we prove that on a surface with Alexandrov’s curvature bounded below, the distance derives from a Riemannian metric whose components, for any p ∈ [1, 2), locally belong to W1,p out of a discrete singular set. This result is based on Reshetnyak’s work on the more general class of surfaces with bounded integral curvature.