Displaying 141 – 160 of 198

Showing per page

Stability of graphs.

Demir, Bünyamin, Deniz, Ali, Koçak, Sahin (2009)

The Electronic Journal of Combinatorics [electronic only]

Tangent Lines and Lipschitz Differentiability Spaces

Fabio Cavalletti, Tapio Rajala (2016)

Analysis and Geometry in Metric Spaces

We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz...

The Boundary at Infinity of a Rough CAT(0) Space

S.M. Buckley, K. Falk (2014)

Analysis and Geometry in Metric Spaces

We develop the boundary theory of rough CAT(0) spaces, a class of length spaces that contains both Gromov hyperbolic length spaces and CAT(0) spaces. The resulting theory generalizes the common features of the Gromov boundary of a Gromov hyperbolic length space and the ideal boundary of a complete CAT(0) space. It is not assumed that the spaces are geodesic or proper

The Rotation Group

Karol Pąk (2012)

Formalized Mathematics

We introduce length-preserving linear transformations of Euclidean topological spaces. We also introduce rotation which preserves orientation (proper rotation) and reverses orientation (improper rotation). We show that every rotation that preserves orientation can be represented as a composition of base proper rotations. And finally, we show that every rotation that reverses orientation can be represented as a composition of proper rotations and one improper rotation.

Currently displaying 141 – 160 of 198