A Cone of Inhomogeneous Second-Order Polynomials.
Page 1 Next
S.M. Malitz, J.I. Malitz (1992)
Discrete & computational geometry
J. E. Valentine, S. G. Wayment (1981)
Colloquium Mathematicae
Jones, M. (1991)
International Journal of Mathematics and Mathematical Sciences
Nilgün Sönmez (2009)
Kragujevac Journal of Mathematics
F. De Blasi, J. Myjak (1995)
Studia Mathematica
Let be a strictly convex separable Banach space of dimension at least 2. Let K() be the space of all nonempty compact convex subsets of endowed with the Hausdorff distance. Denote by the set of all X ∈ K() such that the farthest distance mapping is multivalued on a dense subset of . It is proved that is a residual dense subset of K().
P.M. Vaidya (1989)
Discrete & computational geometry
José Soares (1994)
Discrete & computational geometry
Wladimir G. Boskoff, Bogdan D. Suceavă (2008)
Czechoslovak Mathematical Journal
In the present paper we answer two questions raised by Barbilian in 1960. First, we study how far can the hypothesis of Barbilian's metrization procedure can be relaxed. Then, we prove that Barbilian's metrization procedure in the plane generates either Riemannian metrics or Lagrance generalized metrics not reducible to Finslerian or Langrangian metrics.
Balaji, R., Bapat, R.B. (2007)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Georges Dostor (1873)
Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale
Sturmfels, Bernd, Yu, Josephine (2004)
The Electronic Journal of Combinatorics [electronic only]
M. Katz (1989)
Discrete & computational geometry
Govaert, Eline, Van Maldeghem, Hendrik (2002)
Beiträge zur Algebra und Geometrie
Jussi Väisälä (1982)
Colloquium Mathematicae
M. Richter (1986)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Li, Chi-Kwong, Milligan, Thomas, Trosset, Michael W. (2010)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Rylov, Yuri A. (2002)
International Journal of Mathematics and Mathematical Sciences
O. Ovchinnikov (2007)
Mathware and Soft Computing
W. Kirk (1998)
Fundamenta Mathematicae
It is shown that for a metric space (M,d) the following are equivalent: (i) M is a complete ℝ-tree; (ii) M is hyperconvex and has unique metric segments.
Park, Chun-Gil, Rassias, Themistocles M. (2006)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Page 1 Next