A 2-metric Characterization of the Euclidean Plane.
Page 1 Next
Raymond W. Freese (1973)
Mathematische Annalen
J.A. Lester (1986)
Monatshefte für Mathematik
Roman Ger (1985)
Aequationes mathematicae
Faruk Abi-Khuzam (1988)
Elemente der Mathematik
Ling, Joseph M. (2007)
Beiträge zur Algebra und Geometrie
Boskoff, Wladimir G., Suceavă, Bogdan D. (2008)
Beiträge zur Algebra und Geometrie
D.M. Milosevic (1987)
Elemente der Mathematik
J.A. Wiseman, Paul R. Wilson (1988)
Discrete & computational geometry
Giering, Oswald (1997)
Journal for Geometry and Graphics
Jarosław Kosiorek (1991)
Mathematica Bohemica
We present an axiom system for class of full Euclidean spaces (i.e. of projective closures of Euclidean spaces) and prove the representation theorem for our system, using connections between Euclidean spaces and elliptic planes.
Roland H. Eddy (1986)
Elemente der Mathematik
J.A. Lester (1987)
Aequationes mathematicae
Louis Saltel (1873)
Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale
E. Buchsteiner-Kießling, H.-J. Schäler (1985)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
A.O. KONNULLY (1980)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
S.G. Hoggar (1978)
Mathematica Scandinavica
Radić, Mirko (2005)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Edmonds, Allan L., Hajja, Mowaffaq, Martini, Horst (2005)
Beiträge zur Algebra und Geometrie
Wanda Szmielew (1980)
Fundamenta Mathematicae
Vladimir Fonf, Menachem Kojman (2001)
Fundamenta Mathematicae
We investigate countably convex subsets of Banach spaces. A subset of a linear space is countably convex if it can be represented as a countable union of convex sets. A known sufficient condition for countable convexity of an arbitrary subset of a separable normed space is that it does not contain a semi-clique [9]. A semi-clique in a set S is a subset P ⊆ S so that for every x ∈ P and open neighborhood u of x there exists a finite set X ⊆ P ∩ u such that conv(X) ⊈ S. For closed sets this condition...
Page 1 Next