Displaying 21 – 40 of 46

Showing per page

Colouring polytopic partitions in d

Michal Křížek (2002)

Mathematica Bohemica

We consider face-to-face partitions of bounded polytopes into convex polytopes in d for arbitrary d 1 and examine their colourability. In particular, we prove that the chromatic number of any simplicial partition does not exceed d + 1 . Partitions of polyhedra in 3 into pentahedra and hexahedra are 5 - and 6 -colourable, respectively. We show that the above numbers are attainable, i.e., in general, they cannot be reduced.

Compact hyperbolic tetrahedra with non-obtuse dihedral angles.

Roland K.W. Roeder (2006)

Publicacions Matemàtiques

Given a combinatorial description C of a polyhedron having E edges, the space of dihedral angles of all compact hyperbolic polyhedra that realize C is generally not a convex subset of RE. If C has five or more faces, Andreev's Theorem states that the corresponding space of dihedral angles AC obtained by restricting to non-obtuse angles is a convex polytope. In this paper we explain why Andreev did not consider tetrahedra, the only polyhedra having fewer than five faces, by demonstrating that the...

Configuration spaces and limits of voronoi diagrams

Roderik Lindenbergh, Wilberd van der Kallen, Dirk Siersma (2003)

Banach Center Publications

The Voronoi diagram of n distinct generating points divides the plane into cells, each of which consists of points most close to one particular generator. After introducing 'limit Voronoi diagrams' by analyzing diagrams of moving and coinciding points, we define compactifications of the configuration space of n distinct, labeled points. On elements of these compactifications we define Voronoi diagrams.

Countably convex G δ sets

Vladimir Fonf, Menachem Kojman (2001)

Fundamenta Mathematicae

We investigate countably convex G δ subsets of Banach spaces. A subset of a linear space is countably convex if it can be represented as a countable union of convex sets. A known sufficient condition for countable convexity of an arbitrary subset of a separable normed space is that it does not contain a semi-clique [9]. A semi-clique in a set S is a subset P ⊆ S so that for every x ∈ P and open neighborhood u of x there exists a finite set X ⊆ P ∩ u such that conv(X) ⊈ S. For closed sets this condition...

Covering the plane with sprays

James H. Schmerl (2010)

Fundamenta Mathematicae

For any three noncollinear points c₀,c₁,c₂ ∈ ℝ², there are sprays S₀,S₁,S₂ centered at c₀,c₁,c₂ that cover ℝ². This improves the result of de la Vega in which c₀,c₁,c₂ were required to be the vertices of an equilateral triangle.

Currently displaying 21 – 40 of 46