Displaying 141 – 160 of 923

Showing per page

Configuration spaces and limits of voronoi diagrams

Roderik Lindenbergh, Wilberd van der Kallen, Dirk Siersma (2003)

Banach Center Publications

The Voronoi diagram of n distinct generating points divides the plane into cells, each of which consists of points most close to one particular generator. After introducing 'limit Voronoi diagrams' by analyzing diagrams of moving and coinciding points, we define compactifications of the configuration space of n distinct, labeled points. On elements of these compactifications we define Voronoi diagrams.

Countably convex G δ sets

Vladimir Fonf, Menachem Kojman (2001)

Fundamenta Mathematicae

We investigate countably convex G δ subsets of Banach spaces. A subset of a linear space is countably convex if it can be represented as a countable union of convex sets. A known sufficient condition for countable convexity of an arbitrary subset of a separable normed space is that it does not contain a semi-clique [9]. A semi-clique in a set S is a subset P ⊆ S so that for every x ∈ P and open neighborhood u of x there exists a finite set X ⊆ P ∩ u such that conv(X) ⊈ S. For closed sets this condition...

Covering the plane with sprays

James H. Schmerl (2010)

Fundamenta Mathematicae

For any three noncollinear points c₀,c₁,c₂ ∈ ℝ², there are sprays S₀,S₁,S₂ centered at c₀,c₁,c₂ that cover ℝ². This improves the result of de la Vega in which c₀,c₁,c₂ were required to be the vertices of an equilateral triangle.

Critical configurations of planar robot arms

Giorgi Khimshiashvili, Gaiane Panina, Dirk Siersma, Alena Zhukova (2013)

Open Mathematics

It is known that a closed polygon P is a critical point of the oriented area function if and only if P is a cyclic polygon, that is, P can be inscribed in a circle. Moreover, there is a short formula for the Morse index. Going further in this direction, we extend these results to the case of open polygonal chains, or robot arms. We introduce the notion of the oriented area for an open polygonal chain, prove that critical points are exactly the cyclic configurations with antipodal endpoints and derive...

Crooked planes.

Drumm, Todd A., Goldman, William M. (1995)

Electronic Research Announcements of the American Mathematical Society [electronic only]

Currently displaying 141 – 160 of 923