Classification of Arrangements by the Number of Their Cells.
The Gauss−Minkowski correspondence in ℝ2 states the existence of a homeomorphism between the probability measures μ on [0,2π] such that ∫ 0 2 π e ix d μ ( x ) = 0 and the compact convex sets (CCS) of the plane with perimeter 1. In this article, we bring out explicit formulas relating the border of a CCS to its probability measure. As a consequence, we show that some natural operations on CCS – for example, the Minkowski sum – have natural translations in terms of probability measure operations,...
We introduce a new condition which extends the definition of sticky particle dynamics to the case of discontinuous initial velocities with negative jumps. We show the existence of a stochastic process and a forward flow satisfying and , where is the law of and is the velocity of particle at time . Results on the flow characterization and Lipschitz continuity are also given.Moreover, the map is the entropy solution of a scalar conservation law where the flux represents the particles...