Displaying 101 – 120 of 203

Showing per page

Minkowskian rhombi and squares inscribed in convex Jordan curves

Horst Martini, Senlin Wu (2010)

Colloquium Mathematicae

We show that any convex Jordan curve in a normed plane admits an inscribed Minkowskian square. In addition we prove that no two different Minkowskian rhombi with the same direction of one diagonal can be inscribed in the same strictly convex Jordan curve.

Monotonic rearrangements of functions with small mean oscillation

Dmitriy M. Stolyarov, Vasily I. Vasyunin, Pavel B. Zatitskiy (2015)

Studia Mathematica

We obtain sharp bounds for the monotonic rearrangement operator from "dyadic-type" classes to "continuous" ones; in particular, for the BMO space and Muckenhoupt classes. The idea is to connect the problem with a simple geometric construction named α-extension.

On area and side lengths of triangles in normed planes

Gennadiy Averkov, Horst Martini (2009)

Colloquium Mathematicae

Let d be a d-dimensional normed space with norm ||·|| and let B be the unit ball in d . Let us fix a Lebesgue measure V B in d with V B ( B ) = 1 . This measure will play the role of the volume in d . We consider an arbitrary simplex T in d with prescribed edge lengths. For the case d = 2, sharp upper and lower bounds of V B ( T ) are determined. For d ≥ 3 it is noticed that the tight lower bound of V B ( T ) is zero.

On Gnomons

Jan M. Aarts, Robbert. J. Fokkink (2003)

Matematički Vesnik

Currently displaying 101 – 120 of 203