Displaying 41 – 60 of 403

Showing per page

Asymptotic behaviour of averages of k-dimensional marginals of measures on ℝⁿ

Jesús Bastero, Julio Bernués (2009)

Studia Mathematica

We study the asymptotic behaviour, as n → ∞, of the Lebesgue measure of the set x K : | P E ( x ) | t for a random k-dimensional subspace E ⊂ ℝⁿ and an isotropic convex body K ⊂ ℝⁿ. For k growing slowly to infinity, we prove it to be close to the suitably normalised Gaussian measure in k of a t-dilate of the Euclidean unit ball. Some of the results hold for a wider class of probabilities on ℝⁿ.

Asymptotische Berührung k -ter Ordnung konvexer Mengen

Libuše Grygarová (1980)

Aplikace matematiky

In der Arbeit geht es um die Charakteristik des allgemeinen Begriffs der asymptotischen Berührung von solchen abgeschlossenen, konvexen Mengen in E n , wo ihr Abstand gleich Null und ihr Durchschnitt leer ist. Es wird gezeigt, dass unter diesem Umstand man dem fraglichen Mengenpaar ein Tripel von natürlichen Zahlen (die Ordnung der Berührung, der Grad der Berührung und die Diemnsion des zugehörigen asymptotischen, linearen Raumes), welches eine Charakteristik dieser Berührung darstellt, eindeutig zuordnen...

Average decay of Fourier transforms and geometry of convex sets.

Luca Brandolini, Marco Rigoli, Giancarlo Travaglini (1998)

Revista Matemática Iberoamericana

Let B be a convex body in R2, with piecewise smooth boundary and let ^χB denote the Fourier transform of its characteristic function. In this paper we determine the admissible decays of the spherical Lp averages of ^χB and we relate our analysis to a problem in the geometry of convex sets. As an application we obtain sharp results on the average number of integer lattice points in large bodies randomly positioned in the plane.

Balancing vectors and convex bodies

Wojciech Banaszczyk (1993)

Studia Mathematica

Let U, V be two symmetric convex bodies in n and |U|, |V| their n-dimensional volumes. It is proved that there exist vectors u 1 , . . . , u n U such that, for each choice of signs ε 1 , . . . , ε n = ± 1 , one has ε 1 u 1 + . . . + ε n u n r V where r = ( 2 π e 2 ) - 1 / 2 n 1 / 2 ( | U | / | V | ) 1 / n . Hence it is deduced that if a metrizable locally convex space is not nuclear, then it contains a null sequence ( u n ) such that the series n = 1 ε n u π ( n ) is divergent for any choice of signs ε n = ± 1 and any permutation π of indices.

Borsuk-Ulam type theorems

Adam Idzik (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

A generalization of the theorem of Bajmóczy and Bárány which in turn is a common generalization of Borsuk's and Radon's theorem is presented. A related conjecture is formulated.

Currently displaying 41 – 60 of 403