Displaying 41 – 60 of 80

Showing per page

On hyperplanes and semispaces in max–min convex geometry

Viorel Nitica, Sergeĭ Sergeev (2010)

Kybernetika

The concept of separation by hyperplanes and halfspaces is fundamental for convex geometry and its tropical (max-plus) analogue. However, analogous separation results in max-min convex geometry are based on semispaces. This paper answers the question which semispaces are hyperplanes and when it is possible to “classically” separate by hyperplanes in max-min convex geometry.

On smooth points of boundaries of open sets

S. Rolewicz (2009)

Studia Mathematica

The notions of smooth points of the boundary of an open set and α(·) intrinsically paraconvex sets are introduced. It is shown that for an α(·) intrinsically paraconvex open set the set of smooth points is a dense G δ -set of the boundary.

Operations between sets in geometry

Richard J. Gardner, Daniel Hug, Wolfgang Weil (2013)

Journal of the European Mathematical Society

An investigation is launched into the fundamental characteristics of operations on and between sets, with a focus on compact convex sets and star sets (compact sets star-shaped with respect to the origin) in n -dimensional Euclidean space n . It is proved that if n 2 , with three trivial exceptions, an operation between origin-symmetric compact convex sets is continuous in the Hausdorff metric, G L ( n ) covariant, and associative if and only if it is L p addition for some 1 p . It is also demonstrated that if n 2 ,...

Semi-monotone sets

Saugata Basu, Andrei Gabrielov, Nicolai Vorobjov (2013)

Journal of the European Mathematical Society

A coordinate cone in n is an intersection of some coordinate hyperplanes and open coordinate half-spaces. A semi-monotone set is an open bounded subset of n , definable in an o-minimal structure over the reals, such that its intersection with any translation of any coordinate cone is connected. This notion can be viewed as a generalization of convexity. Semi-monotone sets have a number of interesting geometric and combinatorial properties. The main result of the paper is that every semi-monotone...

Sets Expressible as Unions of Staircase n -Convex Polygons

Marilyn Breen (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Let k and n be fixed, k 1 , n 1 , and let S be a simply connected orthogonal polygon in the plane. For T S , T lies in a staircase n -convex orthogonal polygon P in S if and only if every two points of T see each other via staircase n -paths in S . This leads to a characterization for those sets S expressible as a union of k staircase n -convex polygons P i , 1 i k .

Shaking compact sets.

Campi, Stefano, Colesanti, Andrea, Gronchi, Paolo (2001)

Beiträge zur Algebra und Geometrie

Currently displaying 41 – 60 of 80