On a question of Milman and Alesker concerning the monotonicity of a domain functional.
Let be a d-dimensional normed space with norm ||·|| and let B be the unit ball in . Let us fix a Lebesgue measure in with . This measure will play the role of the volume in . We consider an arbitrary simplex T in with prescribed edge lengths. For the case d = 2, sharp upper and lower bounds of are determined. For d ≥ 3 it is noticed that the tight lower bound of is zero.
The paper begins with a self-contained and short development of Bárány’s theorems of Carathéodory and Helly type in finite-dimensional spaces together with some new variants. In the second half the possible generalizations of these results to arbitrary Banach spaces are investigated. The Carathéodory-Bárány theorem has a counterpart in arbitrary dimensions under suitable uniform compactness or uniform boundedness conditions. The proper generalization of the Helly-Bárány theorem reads as follows:...