Displaying 21 – 40 of 200

Showing per page

On area and side lengths of triangles in normed planes

Gennadiy Averkov, Horst Martini (2009)

Colloquium Mathematicae

Let d be a d-dimensional normed space with norm ||·|| and let B be the unit ball in d . Let us fix a Lebesgue measure V B in d with V B ( B ) = 1 . This measure will play the role of the volume in d . We consider an arbitrary simplex T in d with prescribed edge lengths. For the case d = 2, sharp upper and lower bounds of V B ( T ) are determined. For d ≥ 3 it is noticed that the tight lower bound of V B ( T ) is zero.

On Bárány's theorems of Carathéodory and Helly type

Ehrhard Behrends (2000)

Studia Mathematica

The paper begins with a self-contained and short development of Bárány’s theorems of Carathéodory and Helly type in finite-dimensional spaces together with some new variants. In the second half the possible generalizations of these results to arbitrary Banach spaces are investigated. The Carathéodory-Bárány theorem has a counterpart in arbitrary dimensions under suitable uniform compactness or uniform boundedness conditions. The proper generalization of the Helly-Bárány theorem reads as follows:...

On billiard arcs

K. Bezdek (1990)

Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry

Currently displaying 21 – 40 of 200