Page 1

Displaying 1 – 8 of 8

Showing per page

On hyperbolic virtual polytopes and hyperbolic fans

Gaiane Panina (2006)

Open Mathematics

Hyperbolic virtual polytopes arose originally as polytopal versions of counterexamples to the following A.D.Alexandrov’s uniqueness conjecture: Let K ⊂ ℝ3 be a smooth convex body. If for a constant C, at every point of ∂K, we have R 1 ≤ C ≤ R 2 then K is a ball. (R 1 and R 2 stand for the principal curvature radii of ∂K.) This paper gives a new (in comparison with the previous construction by Y.Martinez-Maure and by G.Panina) series of counterexamples to the conjecture. In particular, a hyperbolic...

On light subgraphs in plane graphs of minimum degree five

Stanislav Jendrol', Tomáš Madaras (1996)

Discussiones Mathematicae Graph Theory

A subgraph of a plane graph is light if the sum of the degrees of the vertices of the subgraph in the graph is small. It is well known that a plane graph of minimum degree five contains light edges and light triangles. In this paper we show that every plane graph of minimum degree five contains also light stars K 1 , 3 and K 1 , 4 and a light 4-path P₄. The results obtained for K 1 , 3 and P₄ are best possible.

Currently displaying 1 – 8 of 8

Page 1