On the structure of the quadratic Boolean problem polytope
Adhesive polymatroids were defined by F. Matúš motivated by entropy functions. Two polymatroids are adhesive if they can be glued together along their joint part in a modular way; and are one-adhesive, if one of them has a single point outside their intersection. It is shown that two polymatroids are one-adhesive if and only if two closely related polymatroids have joint extension. Using this result, adhesive polymatroid pairs on a five-element set are characterized.
L’espace des configurations de points distincts de admet une filtration naturelle qui est induite par les inclusions des dans . Nous caractérisons le type d’homotopie de cette filtration par les propriétés combinatoires d’une structure cellulaire sous-jacente, étroitement liée à la théorie des -opérades de May. Cela donne une approche unifiée des différents modèles combinatoires d’espaces de lacets itérés et redémontre les théorèmes d’approximation de Milgram, Smith et Kashiwabara.
At universities focused on economy, Operation Research topics are usually included in the study plan, including solving of Linear Programming problems. A universal tool for their algebraic solution is (numerically difficult) Simplex Algorithm, for which it is necessary to know at least the fundamental of Matrix Algebra. To illustrate this method of solving LP problems and to discuss all types of results, it seems to be very convenient to include a chapter about graphic solutions to LP problems....
Linear programming (LP) problems with uncertain objective function coefficients (OFCs) are treated in this paper. In such problems, the decision-maker would be interested in an optimal solution that has robustness against uncertainty. A solution optimal for all conceivable OFCs can be considered a robust optimal solution. Then we investigate an efficient method for checking whether a given non-degenerate basic feasible (NBF) solution is optimal for all OFC vectors in a specified range. When the...
The m-subspace polytope is defined as the convex hull of the characteristic vectors of all m-dimensional subspaces of a finite affine space. The particular case of the hyperplane polytope has been investigated by Maurras (1993) and Anglada and Maurras (2003), who gave a complete characterization of the facets. The general m-subspace polytope that we consider shows a much more involved structure, notably as regards facets. Nevertheless, several families of facets are established here. Then the...
En este artículo se obtiene una generalización de la caracterización de los puntos extremos en el poliedro de soluciones factibles del problema estándar de la Programación Lineal. Para ello se usa una extensión del concepto de cara dado por Goldman y Tucker para conos convexos poliédricos que difiere del expuesto en la mayoría de los tratados clásicos (Grünbaum, Mullen-Shepard, Stoer-Witzgall, ...).