Lattice Inequalities for Convex Bodies and Arbitrary Lattices.
In this paper we introduce generalized Craig lattices, which allows us to construct lattices in Euclidean spaces of many dimensions in the range which are denser than the densest known Mordell-Weil lattices. Moreover we prove that if there were some nice linear binary codes we could construct lattices even denser in the range . We also construct some dense lattices of dimensions in the range . Finally we also obtain some new lattices of moderate dimensions such as , which are denser than the...
The set of point sets of , having the property that their minimal interpoint distance is greater than a given strictly positive constant is shown to be equippable by a metric for which it is a compact topological space and such that the Hausdorff metric on the subset of the finite point sets is compatible with the restriction of this topology to . We show that its subsets of Delone sets of given constants in , are compact. Three (classes of) metrics, whose one of crystallographic nature,...
The paper deals with the approximation by polynomials with integer coefficients in , 1 ≤ p ≤ ∞. Let be the space of polynomials of degree ≤ n which are divisible by the polynomial , r ≥ 0, and let be the set of polynomials with integer coefficients. Let be the maximal distance of elements of from in . We give rather precise quantitative estimates of for n ≳ 6r. Then we obtain similar, somewhat less precise, estimates of for p ≠ 2. It follows that as n → ∞. The results partially...