Dihedral f-tilings of the sphere by equilateral and scalene triangles. III.
D'Azevedo Breda, A.M., Ribeiro, Patrícia S., Santos, Altino F. (2008)
The Electronic Journal of Combinatorics [electronic only]
A. M. D'Azevedo Breda, Patrícia S. Ribeiro, Altino F. Santos (2010)
Rendiconti del Seminario Matematico della Università di Padova
Breda, Ana M.d'Azevedo, Santos, Altino F. (2004)
Beiträge zur Algebra und Geometrie
Broughton, S.Allen, Haney, Dawn M., McKeough, Lori T., Smith Mayfield, Brandy (2000)
The New York Journal of Mathematics [electronic only]
Sellers, James A. (2002)
Journal of Integer Sequences [electronic only]
Peeters, Kasper, Taormina, Anne (2008)
Computational & Mathematical Methods in Medicine
Johansson, Kurt, Nordenstam, Eric (2006)
Electronic Journal of Probability [electronic only]
Peter HaÏssinsky (2009)
Annales de l’institut Fourier
Le but de cette note est de tenter d’expliquer les liens étroits qui unissent la théorie des empilements de cercles et des modules combinatoires et de comparer les approches à la conjecture de J.W. Cannon qui en découlent.
Elizaveta Zamorzaeva (2004)
Visual Mathematics
Johansson, Kurt, Nordenstam, Eric J.G. (2007)
Electronic Journal of Probability [electronic only]
Götz Gelbrich (1997)
Aequationes mathematicae
C. Bandt, P. Gummelt (1997)
Aequationes mathematicae
Goetgheluck, Pierre (1993)
Experimental Mathematics
Catarina P. Avelino, Altino F. Santos (2017)
Czechoslovak Mathematical Journal
A classification of dihedral folding tessellations of the sphere whose prototiles are a kite and an equilateral or isosceles triangle was obtained in recent four papers by Avelino and Santos (2012, 2013, 2014 and 2015). In this paper we extend this classification, presenting all dihedral folding tessellations of the sphere by kites and scalene triangles in which the shorter side of the kite is equal to the longest side of the triangle. Within two possible cases of adjacency, only one will be addressed....
Jonsson, Jakob (2006)
The Electronic Journal of Combinatorics [electronic only]
Jonsson, Jakob (2009)
The Electronic Journal of Combinatorics [electronic only]
Szirmai, Jenő (2005)
Beiträge zur Algebra und Geometrie
Bernhard Klaaßen (1995)
Elemente der Mathematik
Richard Kenyon (1994)
Commentarii mathematici Helvetici
Matthieu Latapy (2002)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of -gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a -gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.