The search session has expired. Please query the service again.
Let be an algebraic number. We study the strings of zeros (“gaps”) in the Rényi -expansion of unity which controls the set of -integers. Using a version of Liouville’s inequality which extends Mahler’s and Güting’s approximation theorems, the strings of zeros in are shown to exhibit a “gappiness” asymptotically bounded above by , where is the Mahler measure of . The proof of this result provides in a natural way a new classification of algebraic numbers with classes called Q...
The spectrum of a weighted Dirac comb on the Thue-Morse quasicrystal is investigated by means of the Bombieri-Taylor conjecture, for Bragg peaks, and of a new conjecture that we call Aubry-Godrèche-Luck conjecture, for the singular continuous component. The decomposition of the Fourier transform of the weighted Dirac comb is obtained in terms of tempered distributions. We show that the asymptotic arithmetics of the -rarefied sums of the Thue-Morse sequence (Dumont; Goldstein, Kelly and Speer; Grabner;...
Currently displaying 1 –
3 of
3