Horoball packings for the Lambert-cube tilings in the hyperbolic 3-space.
There are several topological spaces associated to a complex hyperplane arrangement: the complement and its boundary manifold, as well as the Milnor fiber and its own boundary. All these spaces are related in various ways, primarily by a set of interlocking fibrations. We use cohomology with coefficients in rank local systems on the complement of the arrangement to gain information on the homology of the other three spaces, and on the monodromy operators of the various fibrations.
G.F. Voronoi (1868–1908) wrote two memoirs in which he describes two reduction theories for lattices, well-suited for sphere packing and covering problems. In his first memoir a characterization of locally most economic packings is given, but a corresponding result for coverings has been missing. In this paper we bridge the two classical memoirs.By looking at the covering problem from a different perspective, we discover the missing analogue. Instead of trying to find lattices giving economical...
In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of -gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a -gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.
In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of 2D-gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a 2D-gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.