Pseudo-self-affine tilings in .
We consider analogies between the "cut-and-project" method of constructing quasicrystals and the theory of almost periodic functions. In particular an analytic method of constructing almost periodic functions by means of convolution is presented. A geometric approach to critical points of such functions is also shown and illustrated with examples.
For a given lattice, we establish an equivalence between closed zones for the corresponding Voronoï polytope, suitable hyperplane sections of the corresponding Delaunay partition, and rank quadratic forms which are extreme rays for the corresponding -type domain.
A sign pattern matrix (or nonnegative sign pattern matrix) is a matrix whose entries are from the set (, respectively). The minimum rank (or rational minimum rank) of a sign pattern matrix is the minimum of the ranks of the matrices (rational matrices, respectively) whose entries have signs equal to the corresponding entries of . Using a correspondence between sign patterns with minimum rank and point-hyperplane configurations in and Steinitz’s theorem on the rational realizability of...
All 3-dimensional convex polytopes are known to be rigid. Still their Minkowski differences (virtual polytopes) can be flexible with any finite freedom degree. We derive some sufficient rigidity conditions for virtual polytopes and present some examples of flexible ones. For example, Bricard's first and second flexible octahedra can be supplied by the structure of a virtual polytope.