Previous Page 3

Displaying 41 – 45 of 45

Showing per page

Surfaces which contain many circles

Nobuko Takeuchi (2008)

Banach Center Publications

We survey the results on surfaces which contain many circles. First, we give two analyses of shapes which always look round. Then we introduce the Blum conjecture: “A closed C surface in E³ which contains seven circles through each point is a sphere”, and give some partial affirmative results toward the conjecture. Moreover, we study some surfaces which contain many circles through each point, for example, cyclides.

Surfaces with prescribed Weingarten operator

Udo Simon, Konrad Voss, Luc Vrancken, Martin Wiehe (2002)

Banach Center Publications

We investigate pairs of surfaces in Euclidean 3-space with the same Weingarten operator in case that one surface is given as surface of revolution. Our local and global results complement global results on ovaloids of revolution from S-V-W-W.

Currently displaying 41 – 45 of 45

Previous Page 3