Displaying 41 – 60 of 89

Showing per page

On a generalized class of recurrent manifolds

Absos Ali Shaikh, Ananta Patra (2010)

Archivum Mathematicum

The object of the present paper is to introduce a non-flat Riemannian manifold called hyper-generalized recurrent manifolds and study its various geometric properties along with the existence of a proper example.

On canonical screen for lightlike submanifolds of codimension two

K. Duggal (2007)

Open Mathematics

In this paper we study two classes of lightlike submanifolds of codimension two of semi-Riemannian manifolds, according as their radical subspaces are 1-dimensional or 2-dimensional. For a large variety of both these classes, we prove the existence of integrable canonical screen distributions subject to some reasonable geometric conditions and support the results through examples.

On F 2 ε -planar mappings of (pseudo-) Riemannian manifolds

Irena Hinterleitner, Josef Mikeš, Patrik Peška (2014)

Archivum Mathematicum

We study special F -planar mappings between two n -dimensional (pseudo-) Riemannian manifolds. In 2003 Topalov introduced P Q ε -projectivity of Riemannian metrics, ε 1 , 1 + n . Later these mappings were studied by Matveev and Rosemann. They found that for ε = 0 they are projective. We show that P Q ε -projective equivalence corresponds to a special case of F -planar mapping studied by Mikeš and Sinyukov (1983) and F 2 -planar mappings (Mikeš, 1994), with F = Q . Moreover, the tensor P is derived from the tensor Q and the non-zero...

On semi-Riemannian manifolds satisfying some conformally invariant curvature condition

Ryszard Deszcz, Małgorzata Głogowska, Hideko Hashiguchi, Marian Hotloś, Makoto Yawata (2013)

Colloquium Mathematicae

We investigate semi-Riemannian manifolds with pseudosymmetric Weyl curvature tensor satisfying some additional condition imposed on their curvature tensor. Among other things we prove that the so-called Roter type equation holds on such manifolds. We present applications of our results to hypersurfaces in semi-Riemannian space forms, as well as to 4-dimensional warped products.

On some type of curvature conditions

Mohamed Belkhelfa, Ryszard Deszcz, Małgorzata Głogowska, Marian Hotloś, Dorota Kowalczyk, Leopold Verstraelen (2002)

Banach Center Publications

In this paper we present a review of recent results on semi-Riemannian manifolds satisfying curvature conditions of pseudosymmetry type.

Quasi-Einstein hypersurfaces in semi-Riemannian space forms

Ryszard Deszcz, Marian Hotloś, Zerrin Sentürk (2001)

Colloquium Mathematicae

We investigate curvature properties of hypersurfaces of a semi-Riemannian space form satisfying R·C = LQ(S,C), which is a curvature condition of pseudosymmetry type. We prove that under some additional assumptions the ambient space of such hypersurfaces must be semi-Euclidean and that they are quasi-Einstein Ricci-semisymmetric manifolds.

Régularité Lipschitzienne des Géodésiques Minimisantes pour Quelques Distributions Affines

Bensalem, Naceurdine (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 49J15, 49J30, 53B50.In the context of sub-Riemannian geometry and the Lipschitzian regularity of minimizers in control theory, we investigate some properties of minimizing geodesics for certain affine distributions. In particular, we consider the case of a generalized H2-strong affine distribution and the case of an affine Plaff system of maximal class.

Currently displaying 41 – 60 of 89