Page 1

Displaying 1 – 3 of 3

Showing per page

Tangent Lines and Lipschitz Differentiability Spaces

Fabio Cavalletti, Tapio Rajala (2016)

Analysis and Geometry in Metric Spaces

We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz...

The gap phenomenon in the dimension study of finite type systems

Boris Kruglikov (2012)

Open Mathematics

Several examples of gaps (lacunes) between dimensions of maximal and submaximal symmetric models are considered, which include investigation of number of independent linear and quadratic integrals of metrics and counting the symmetries of geometric structures and differential equations. A general result clarifying this effect in the case when the structure is associated to a vector distribution, is proposed.

Currently displaying 1 – 3 of 3

Page 1