Classification of Randers metrics of scalar flag curvature.
We study real submanifolds of a complex hyperbolic space and prove a codimension reduction theorem.
After defining what is meant by a complex spray X on a complex manifold M, we introduce the notion of a spray complex curve associated to X. Several equivalent formulations are derived and we give necessary and sufficient conditions for M to admit spray complex curves for X through each point and in each direction. Refinements of this result are then derived for some special cases, for example when X is the horizontal radial vector field associated to a complex Finsler metric.
Special nets which characterize Cartesian, geodesic, Chebyshevian, geodesic- Chebyshevian and Chebyshevian-geodesic compositions are introduced. Con- ditions for the coefficients of the connectedness in the parameters of these special nets are found.