Loading [MathJax]/extensions/MathZoom.js
Our goal in this paper is to make an attempt to find the largest Lie algebra of vector fields on the indicatrix such that all its elements are tangent to the holonomy group of a Finsler manifold. First, we introduce the notion of the curvature algebra, generated by curvature vector fields, then we define the infinitesimal holonomy algebra by the smallest Lie algebra of vector fields on an indicatrix, containing the curvature vector fields and their horizontal covariant derivatives with respect to...
We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz...
An anholonomic -web of dimension is considered as an -tuple of -dimensional distributions in general position. We investigate a family of -tensor fields (projectors and nilpotents associated with a web in a natural way) which will be used for characterization of all linear connections on a manifold preserving the given web.
Clairaut’s theorem is expressed on the surfaces of rotation in semi Euclidean 4-space. Moreover, the general equations of time-like geodesic curves are characterized according to the results of Clairaut's theorem on the hyperbolic surfaces of rotation and the elliptic surface of rotation, respectively.
We prove the vanishing of the kernel of the Dolbeault operator of the square root of the
canonical line bundle of a compact Hermitian spin surface with positive scalar curvature.
We give lower estimates of the eigenvalues of this operator when the conformal scalar
curvature is non -negative.
In this paper, we prove that the first eigenvalue of a complete spacelike submanifold in with the bounded Gauss map must be zero.
Currently displaying 1 –
20 of
90