On real hypersurfaces in quaternionic projective space with -recurrent second fundamental tensor.
We show that any real Kähler Euclidean submanifold with either non-negative Ricci curvature or non-negative holomorphic sectional curvature has index of relative nullity greater than or equal to . Moreover, if equality holds everywhere, then the submanifold must be a product of Euclidean hypersurfaces almost everywhere, and the splitting is global provided that is complete. In particular, we conclude that the only real Kähler submanifolds in that have either positive Ricci curvature or...
We prove that if the sectional curvature of an n-dimensional pseudo-symmetric manifold with semi-symmetric metric connection is independent of the orientation chosen then the generator of such a manifold is gradient and also such a manifold is subprojective in the sense of Kagan.