Displaying 121 – 140 of 264

Showing per page

On real Kähler Euclidean submanifolds with non-negative Ricci curvature

Luis A. Florit, Wing San Hui, F. Zheng (2005)

Journal of the European Mathematical Society

We show that any real Kähler Euclidean submanifold f : M 2 n 2 n + p with either non-negative Ricci curvature or non-negative holomorphic sectional curvature has index of relative nullity greater than or equal to 2 n 2 p . Moreover, if equality holds everywhere, then the submanifold must be a product of Euclidean hypersurfaces almost everywhere, and the splitting is global provided that M 2 n is complete. In particular, we conclude that the only real Kähler submanifolds M 2 n in 3 n that have either positive Ricci curvature or...

On Riemannian tangent bundles.

Al-Aqeel, Adnan, Bejancu, Aurel (2006)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

On sectional curvature of a Riemannian manifold with semi-symmetric metric connection

Füsun Özen Zengin, S. Aynur Uysal, Sezgin Altay Demirbag (2011)

Annales Polonici Mathematici

We prove that if the sectional curvature of an n-dimensional pseudo-symmetric manifold with semi-symmetric metric connection is independent of the orientation chosen then the generator of such a manifold is gradient and also such a manifold is subprojective in the sense of Kagan.

Currently displaying 121 – 140 of 264