The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 121 – 140 of 264

Showing per page

On real Kähler Euclidean submanifolds with non-negative Ricci curvature

Luis A. Florit, Wing San Hui, F. Zheng (2005)

Journal of the European Mathematical Society

We show that any real Kähler Euclidean submanifold f : M 2 n 2 n + p with either non-negative Ricci curvature or non-negative holomorphic sectional curvature has index of relative nullity greater than or equal to 2 n 2 p . Moreover, if equality holds everywhere, then the submanifold must be a product of Euclidean hypersurfaces almost everywhere, and the splitting is global provided that M 2 n is complete. In particular, we conclude that the only real Kähler submanifolds M 2 n in 3 n that have either positive Ricci curvature or...

On Riemannian tangent bundles.

Al-Aqeel, Adnan, Bejancu, Aurel (2006)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

On sectional curvature of a Riemannian manifold with semi-symmetric metric connection

Füsun Özen Zengin, S. Aynur Uysal, Sezgin Altay Demirbag (2011)

Annales Polonici Mathematici

We prove that if the sectional curvature of an n-dimensional pseudo-symmetric manifold with semi-symmetric metric connection is independent of the orientation chosen then the generator of such a manifold is gradient and also such a manifold is subprojective in the sense of Kagan.

Currently displaying 121 – 140 of 264