Previous Page 5

Displaying 81 – 85 of 85

Showing per page

Three results on the regularity of the curves that are invariant by an exact symplectic twist map

M.-C. Arnaud (2009)

Publications Mathématiques de l'IHÉS

A theorem due to G. D. Birkhoff states that every essential curve which is invariant under a symplectic twist map of the annulus is the graph of a Lipschitz map. We prove: if the graph of a Lipschitz map h:T→R is invariant under a symplectic twist map, then h is a little bit more regular than simply Lipschitz (Theorem 1); we deduce that there exists a Lipschitz map h:T→R whose graph is invariant under no symplectic twist map (Corollary 2).Assuming that the dynamic of a twist map restricted to a...

Une caractérisation des formes symplectiques

Bruno Sévennec (1998)

Annales de l'institut Fourier

On montre qu’une 2-forme non nulle sur une variété M , telle que le pseudogroupe des difféomorphismes locaux la préservant soit transitif sur le fibré des directions tangentes, est symplectique si la dimension de M n’est pas 6 . De plus, il y a un contre-exemple en dimension 6, dont on montre qu’il est essentiellement unique.

Weak symplectic fillings and holomorphic curves

Klaus Niederkrüger, Chris Wendl (2011)

Annales scientifiques de l'École Normale Supérieure

We prove several results on weak symplectic fillings of contact 3 -manifolds, including: (1) Every weak filling of any planar contact manifold can be deformed to a blow up of a Stein filling. (2) Contact manifolds that have fully separating planar torsion are not weakly fillable—this gives many new examples of contact manifolds without Giroux torsion that have no weak fillings. (3) Weak fillability is preserved under splicing of contact manifolds along symplectic pre-Lagrangian tori—this gives many...

Currently displaying 81 – 85 of 85

Previous Page 5