The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

Quaternionic contact structures in dimension 7

David Duchemin (2006)

Annales de l’institut Fourier

The conformal infinity of a quaternionic-Kähler metric on a 4 n -manifold with boundary is a codimension 3 distribution on the boundary called quaternionic contact. In dimensions 4 n - 1 greater than 7 , a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7 , we prove a criterion for quaternionic contact structures to be the conformal infinity of a quaternionic-Kähler metric. This allows us to find the quaternionic-contact structures...

Currently displaying 1 – 1 of 1

Page 1