-generalized closed sets.
We investigate whether in the setting of approach spaces there exist measures of relative compactness, (relative) sequential compactness and (relative) countable compactness in the same vein as Kuratowski's measure of compactness. The answer is yes. Not only can we prove that such measures exist, but we can give usable formulas for them and we can prove that they behave nicely with respect to each other in the same way as the classical notions.
A locallic version of Hager’s metric-fine spaces is presented. A general definition of -fineness is given and various special cases are considered, notably all metric frames, complete metric frames. Their interactions with each other, quotients, separability, completion and other topological properties are discussed.
A new topological cardinal invariant is defined; it may be considered as a weaker form of the Lindelöf degree.