Page 1

Displaying 1 – 19 of 19

Showing per page

Partial dcpo’s and some applications

Zhao Dongsheng (2012)

Archivum Mathematicum

We introduce partial dcpo’s and show their some applications. A partial dcpo is a poset associated with a designated collection of directed subsets. We prove that (i) the dcpo-completion of every partial dcpo exists; (ii) for certain spaces X , the corresponding partial dcpo’s of continuous real valued functions on X are continuous partial dcpos; (iii) if a space X is Hausdorff compact, the lattice of all S-lower semicontinuous functions on X is the dcpo-completion of that of continuous real valued...

Pointwise convergence fails to be strict

Ján Borsík, Roman Frič (1998)

Czechoslovak Mathematical Journal

It is known that the ring B ( ) of all Baire functions carrying the pointwise convergence yields a sequential completion of the ring C ( ) of all continuous functions. We investigate various sequential convergences related to the pointwise convergence and the process of completion of C ( ) . In particular, we prove that the pointwise convergence fails to be strict and prove the existence of the categorical ring completion of C ( ) which differs from B ( ) .

Producto, convexificación y completación de espacios métricos generalizados y probabilísticos.

Claudi Alsina (1978)

Stochastica

En 1967 E. Trillas introdujo la noción de espacio métrico generalizado, al considerar métricas abstractas valoradas en semigrupos ordenados, unificando con este punto de vista algebraico-reticular las estructuras métricas reales de M. Fréchet ([5]) y los espacios métricos probabilísticos de K. Menger ([6]) (así como los espacios Booleanos de Blumenthal ([4]) y las métricas naturales definidas en grupos ordenados). En el presente artículo se abordan los problemas de la topología del orden, del producto,...

Properties of Λ , δ -closed sets in topological spaces

D. N. Georgiou, S. Jafari, T. Noiri (2004)

Bollettino dell'Unione Matematica Italiana

In questo articolo vengono presentate e studiate le nozioni di insieme Λ δ e di insieme Λ , δ -chiuso. Inoltre, vengono introdotte le nozioni di Λ , δ -continuità, Λ , δ -compatezza e Λ , δ -connessione e vengono fornite alcune caratterizzazioni degli spazi δ - T 0 e δ - T 1 . Infine, viene mostrato che gli spazi Λ , δ -connessi e Λ , δ -compatti vengono preservati mediante suriezioni δ -continue.

Currently displaying 1 – 19 of 19

Page 1