Displaying 41 – 60 of 307

Showing per page

Closed mapping theorems on k -spaces with point-countable k -networks

Alexander Shibakov (1995)

Commentationes Mathematicae Universitatis Carolinae

We prove some closed mapping theorems on k -spaces with point-countable k -networks. One of them generalizes Lašnev’s theorem. We also construct an example of a Hausdorff space U r with a countable base that admits a closed map onto metric space which is not compact-covering. Another our result says that a k -space X with a point-countable k -network admitting a closed surjection which is not compact-covering contains a closed copy of U r .

Closure spaces and characterizations of filters in terms of their Stone images

Anh Tran Mynard, Frédéric Mynard (2007)

Czechoslovak Mathematical Journal

Fréchet, strongly Fréchet, productively Fréchet, weakly bisequential and bisequential filters (i.e., neighborhood filters in spaces of the same name) are characterized in a unified manner in terms of their images in the Stone space of ultrafilters. These characterizations involve closure structures on the set of ultrafilters. The case of productively Fréchet filters answers a question of S. Dolecki and turns out to be the only one involving a non topological closure structure.

Coherent ultrafilters and nonhomogeneity

Jan Starý (2015)

Commentationes Mathematicae Universitatis Carolinae

We introduce the notion of a coherent P -ultrafilter on a complete ccc Boolean algebra, strengthening the notion of a P -point on ω , and show that these ultrafilters exist generically under 𝔠 = 𝔡 . This improves the known existence result of Ketonen [On the existence of P -points in the Stone-Čech compactification of integers, Fund. Math. 92 (1976), 91–94]. Similarly, the existence theorem of Canjar [On the generic existence of special ultrafilters, Proc. Amer. Math. Soc. 110 (1990), no. 1, 233–241] can...

Compactness of Powers of ω

Paolo Lipparini (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

We characterize exactly the compactness properties of the product of κ copies of the space ω with the discrete topology. The characterization involves uniform ultrafilters, infinitary languages, and the existence of nonstandard elements in elementary extensions. We also have results involving products of possibly uncountable regular cardinals.

Continuous functions between Isbell-Mrówka spaces

Salvador García-Ferreira (1998)

Commentationes Mathematicae Universitatis Carolinae

Let Ψ ( Σ ) be the Isbell-Mr’owka space associated to the M A D -family Σ . We show that if G is a countable subgroup of the group 𝐒 ( ω ) of all permutations of ω , then there is a M A D -family Σ such that every f G can be extended to an autohomeomorphism of Ψ ( Σ ) . For a M A D -family Σ , we set I n v ( Σ ) = { f 𝐒 ( ω ) : f [ A ] Σ for all A Σ } . It is shown that for every f 𝐒 ( ω ) there is a M A D -family Σ such that f I n v ( Σ ) . As a consequence of this result we have that there is a M A D -family Σ such that n + A Σ whenever A Σ and n < ω , where n + A = { n + a : a A } for n < ω . We also notice that there is no M A D -family Σ such...

Currently displaying 41 – 60 of 307