Raster convergence with respect to a closure operator
We deal with a conjectured dichotomy for compact Hausdorff spaces: each such space contains a non-trivial converging ω-sequence or a non-trivial converging ω₁-sequence. We establish that this dichotomy holds in a variety of models; these include the Cohen models, the random real models and any model obtained from a model of CH by an iteration of property K posets. In fact in these models every compact Hausdorff space without non-trivial converging ω₁-sequences is first-countable and, in addition,...
We generalize the notion of a coarse sequential convergence compatible with an algebraic structure to a coarse one in a given class of convergences. In particular, we investigate coarseness in the class of all compatible convergences (with unique limits) the restriction of which to a given subset is fixed. We characterize such convergences and study relative coarseness in connection with extensions and completions of groups and rings. E.g., we show that: (i) each relatively coarse dense group precompletion...
Topologie, pretopologie, paratopologie e pseudotopologie sono importanti classi di convergenze, chiuse per estremi superiori (superiormente chiuse) ed inoltre caratterizzabili mediante le aderenze di certi filtri. Convergenze -massimali in una classe superiormente chiusa , cioè massimali fra le -convergenze aventi la stessa imagine per la proiezione su , svolgono un ruolo importante nella teoria dei quozienti; infatti, una mappa -quoziente sulla convergenza -massimale in è automaticamente...
We extend the Noble and Ulmer theorem and the Juhász and Hajnal theorems in set-theoretic topology. We show that a statement analogous to that in the former theorem is valid for a family of almost topological convergences, whereas statements analogous to those in the latter theorems hold for a pretopologically Hausdorff convergence.
The ring of all real-valued measurable functions, carrying the pointwise convergence, is a sequential ring completion of the subring of all continuous functions and, similarly, the ring of all Borel measurable subsets of is a sequential ring completion of the subring of all finite unions of half-open intervals; the two completions are not categorical. We study -rings of maps and develop a completion theory covering the two examples. In particular, the -fields of sets form an epireflective...