-regular Cauchy completions.
It is known that the ring of all Baire functions carrying the pointwise convergence yields a sequential completion of the ring of all continuous functions. We investigate various sequential convergences related to the pointwise convergence and the process of completion of . In particular, we prove that the pointwise convergence fails to be strict and prove the existence of the categorical ring completion of which differs from .
We study a probabilistic generalization of Lowen's approach spaces. Such a probabilistic approach space is defined in terms of a probabilistic distance which assigns to a point and a subset a distance distribution function. We give a suitable axiom scheme and show that the resulting category is isomorphic to the category of left-continuous probabilistic topological convergence spaces and hence is a topological category. We further show that the category of Lowen's approach spaces is isomorphic to...
We solve the long standing problem of characterizing the class of strongly Fréchet spaces whose product with every strongly Fréchet space is also Fréchet.
We show that, under suitably general formulations, covering properties, accumulation properties and filter convergence are all equivalent notions. This general correspondence is exemplified in the study of products. We prove that a product is Lindelöf if and only if all subproducts by factors are Lindelöf. Parallel results are obtained for final -compactness, -compactness, the Menger and the Rothberger properties.
Given a Tychonoff space , a base for an ideal on is called pseudouniform if any sequence of real-valued continuous functions which converges in the topology of uniform convergence on converges uniformly to the same limit. This paper focuses on pseudouniform bases for ideals with particular emphasis on the ideal of compact subsets and the ideal of all countable subsets of the ground space.