Displaying 161 – 180 of 307

Showing per page

On the convergence and character spectra of compact spaces

István Juhász, William A. R. Weiss (2010)

Fundamenta Mathematicae

An infinite set A in a space X converges to a point p (denoted by A → p) if for every neighbourhood U of p we have |A∖U| < |A|. We call cS(p,X) = |A|: A ⊂ X and A → p the convergence spectrum of p in X and cS(X) = ⋃cS(x,X): x ∈ X the convergence spectrum of X. The character spectrum of a point p ∈ X is χS(p,X) = χ(p,Y): p is non-isolated in Y ⊂ X, and χS(X) = ⋃χS(x,X): x ∈ X is the character spectrum of X. If κ ∈ χS(p,X) for a compactum X then κ,cf(κ) ⊂ cS(p,X). A selection of our results (X...

On the existence of true uniform ultrafilters

Petr Simon (2004)

Commentationes Mathematicae Universitatis Carolinae

We shall show that there is an ultrafilter on singular κ with countable cofinality, which cannot be reached from the set of all subuniform ultrafilters by iterating the closure of sets of size < κ .

On the extensibility of closed filters in T 1 spaces and the existence of well orderable filter bases

Kyriakos Keremedis, Eleftherios Tachtsis (1999)

Commentationes Mathematicae Universitatis Carolinae

We show that the statement CCFC = “the character of a maximal free filter F of closed sets in a T 1 space ( X , T ) is not countable” is equivalent to the Countable Multiple Choice Axiom CMC and, the axiom of choice AC is equivalent to the statement CFE 0 = “closed filters in a T 0 space ( X , T ) extend to maximal closed filters”. We also show that AC is equivalent to each of the assertions: “every closed filter in a T 1 space ( X , T ) extends to a maximal closed filter with a well orderable filter base”, “for every set A ,...

On the subsets of non locally compact points of ultracomplete spaces

Iwao Yoshioka (2002)

Commentationes Mathematicae Universitatis Carolinae

In 1998, S. Romaguera [13] introduced the notion of cofinally Čech-complete spaces equivalent to spaces which we later called ultracomplete spaces. We define the subset of points of a space X at which X is not locally compact and call it an nlc set. In 1999, Garc’ıa-Máynez and S. Romaguera [6] proved that every cofinally Čech-complete space has a bounded nlc set. In 2001, D. Buhagiar [1] proved that every ultracomplete GO-space has a compact nlc set. In this paper, ultracomplete spaces which have...

On weakly bisequential spaces

Chuan Liu (2000)

Commentationes Mathematicae Universitatis Carolinae

Weakly bisequential spaces were introduced by A.V. Arhangel'skii [1], in this paper. We discuss the relations between weakly bisequential spaces and metric spaces, countably bisequential spaces, Fréchet-Urysohn spaces.

Currently displaying 161 – 180 of 307