Some properties of g- and P-spaces
A γ-space with a strictly positive measure is separable. An example of a non-separable γ−space with c.c.c. is given. A P−space with c.c.c. is countable and discrete.
A γ-space with a strictly positive measure is separable. An example of a non-separable γ−space with c.c.c. is given. A P−space with c.c.c. is countable and discrete.
In this paper, we prove the following statements: (1) For any cardinal , there exists a Tychonoff star-Lindelöf space such that . (2) There is a Tychonoff discretely star-Lindelöf space such that does not exist. (3) For any cardinal , there exists a Tychonoff pseudocompact -starcompact space such that .
Motivated by some examples, we introduce the concept of special almost P-space and show, using the reflection principle, that for every space of this kind the inequality “" holds.